Great Activity Nana Mizuki Raritan
Great Activity. By Nana Mizuki. 2007 • 15 songs. Play on Spotify. Orchestral Fantasia. Promise On Christmas. Massive Wonders. Take A Chance. First Calendar. Alfonson Alfonzo Alford Alfraganus Alfred Alfred the Great Alfreda Alfredo Alfredo Christiani Alfredo Cristiani Alfredo Evangelista Alfredo Stroessner Alfric Alfur. Mixtec Mixtecan Mixteco Mixtecos Mixtecs Miyasawa Mizar Mize Mizitra Mizoguchi Mizoram Mizpah Mizpah ring Mizrachi Mizrahi Mizraim Mizuki Mjico Mjollnir.
Nanamizuki.wikia.com GREAT ACTIVITY Nana Mizuki Wiki FANDOM powered by Wikia 638 × 600 - 122k fanpop.com Nana Mizuki Fanclub images Nana Mizuki Great Activity wallpaper. 275 × 240 - 80k - jpg en.wikipedia.org The Museum (album) - Wikipedia 220 × 205 - 10k - jpg en.wikipedia.org The Museum II - Wikipedia 220 × 209 - 13k - jpg en.wikipedia.org Impact Exciter - Wikipedia 220 × 198 - 14k - jpg generasia.com Great Activity - generasia 250 × 358 - 18k - jpg en.wikipedia.org Hybrid Universe - Wikipedia 300 × 268 - 24k - jpg ubuy.om iN Shop Buy iN Online Ubuy Oman 2000 × 2000 - 848k jordan.ubuy.com ANDE Shop Buy ANDE Online Ubuy Jordan 1024 × 1024 - 144k japanrunningnews.blogs. Masters Runner Yoshihisa Hosaka Sets 60+ World Record at Beppu.
• Berman, Reena; Jiang, Di; Wu, Qun; Stevenson, Connor R.; Schaefer, Niccolette R.; Chu, Hong Wei 2016-01-01 Background MUC18 is upregulated in the lungs of asthma and COPD patients. It has been shown to have pro-inflammatory functions in cultured human airway epithelial cells during viral infections and in mice during lung bacterial infections. However, the in vivo role of MUC18 in the context of viral infections remains poorly understood.
The goal of this study is to define the in vivo function of MUC18 during respiratory rhinovirus infection. Methods Muc18 wild-type (WT) and knockout (KO) mice were infected with human rhinovirus 1B (HRV-1B) and sacrificed after 1 day to determine the inflammatory and antiviral responses. To examine the direct effects of Muc18 on viral infection, tracheal epithelial cells isolated from WT and KO mice were grown under air-liquid interface and infected with HRV-1B. Finally, siRNA mediated knockdown of MUC18 was performed in human airway epithelial cells (AECs) to define the impact of MUC18 on human airway response to HRV-1B. Results Both viral load and neutrophilic inflammation were significantly decreased in Muc18 KO mice compared to WT mice. In the in vitro setting, viral load was significantly lower and antiviral gene expression was higher in airway epithelial cells of Muc18 KO mice than the WT mice.
Furthermore, in MUC18 knockdown human AECs, viral load was decreased and antiviral gene expression was increased compared to controls. Conclusions Our study is the first to demonstrate MUC18’s pro-inflammatory and pro-viral function in an in vivo mouse model of rhinovirus infection. PMID:27701461 • Line, B.R. (Albany Medical College, New York (USA)) 1991-09-01 67Ga lung scintigraphy is an established means to assess alveolar inflammation in a wide variety of diffuse lung diseases. It can be used to monitor the extent and activity of the alveolitis during the course of the disease and as a follow-up evaluation to therapy.


Although the mechanism of 67Ga localization is not established firmly, the isotope appears to act as a tracer for disturbed protein and cellular fluxes within the interstitium and alveolar spaces. The radiolabeled aerosol study may also be applied to the study of these fluxes as a reflection of inflammation and injury. Although Tc-DTPA clearance studies are highly sensitive to lung injury, they may be too nonspecific to separate lung injury from other physiologic processes effectively. 117 references. • Abdel Fattah, Elmoataz; Bhattacharya, Abhisek; Herron, Alan; Safdar, Zeenat; Eissa, N Tony 2015-06-01 Autophagy is an important component of the immune response.
However, the functions of autophagy in human diseases are much less understood. We studied biological consequences of autophagy deficiency in mice lacking the essential autophagy gene Atg7 or Atg5 in myeloid cells.
Surprisingly, these mice presented with spontaneous sterile lung inflammation, characterized by marked recruitment of inflammatory cells, submucosal thickening, goblet cell metaplasia, and increased collagen content. Lung inflammation was associated with increase in several proinflammatory cytokines in the bronchoalveolar lavage and in serum.
This inflammation was largely driven by IL-18 as a result of constitutive inflammasome activation. Following i.p. LPS injection, autophagy-deficient mice had higher levels of proinflammatory cytokines in lungs and in serum, as well as increased mortality, than control mice. Intranasal bleomycin challenge exacerbated lung inflammation in autophagy-deficient mice and produced more severe fibrotic changes than in control mice. These results uncover a new and important role for autophagy as negative regulator of lung inflammation. • Martinet, Y; Menard, O; Vaillant, P; Vignaud, J M; Martinet, N 1996-01-01 Fibrosis is a pathological process characterized by the replacement of normal tissue by mesenchymal cells and the extracellular matrix produced by these cells. The sequence of events leading to fibrosis of an organ involves the subsequent processes of injury with inflammation and disruption of the normal tissue architecture, followed by tissue repair with accumulation of mesenchymal cells in the area of derangement.
The same sequence of events occurs in wound healing with normal granulation tissue and scar formation, but, while normal scar formation is very localized and transient, in contrast, in fibrosis, the repair process is exaggerated and usually widespread and can be chronic. Inflammatory cells (mainly mononuclear phagocytes), platelets, endothelial cells, and type II pneumocytes play a direct and indirect role in tissue injury and repair. • Xueshibojie, Liu; Duo, Yu; Tiejun, Wang 2016-10-15 Taraxasterol, a pentacyclic-triterpene isolated from Taraxacum officinale, has been demonstrated to have anti-inflammatory effects. However, the protective effects of taraxasterol against cigarette smoke (CS)-induced lung inflammation have not been reported. This study aimed to investigate the protective effects and mechanism of taraxasterol on CS-induced lung inflammation in mice. CS-induced mouse lung inflammation model was used to investigate the protective effects of taraxasterol in vivo.
Human bronchial epithelial cells (HBECs) were used to investigate the protective mechanism of taraxasterol in vitro. The results showed that taraxasterol attenuated CS-induced lung pathological changes, inflammatory cells infiltration, inflammatory cytokines TNF-α, IL-6 and IL-1β production. Taraxasterol also up-regulated CS-induced glutathione (GSH) production.
In vitro, taraxasterol was found to inhibit CS-induced reactive oxygen species production, recruitment of TLR4 into lipid rafts, NF-κB activation, and IL-8 production. Furthermore, our results showed that antioxidant N-acetyl-L-cysteine (NAC) significantly inhibited CS-induced recruitment of TLR4 into lipid rafts as well as IL-8 production. In conclusion, our results suggested that taraxasterol had protective effects of CS-induced lung inflammation. • Massa, Christopher B; Groves, Angela M; Jaggernauth, Smita U; Laskin, Debra L; Gow, Andrew J 2017-08-01 Both aging and chronic inflammation produce complex structural and biochemical alterations to the lung known to impact work of breathing.
Mice deficient in surfactant protein D (Sftpd) develop progressive age-related lung pathology characterized by tissue destruction/remodeling, accumulation of foamy macrophages and alteration in surfactant composition. This study proposes to relate changes in tissue structure seen in normal aging and in chronic inflammation to altered lung mechanics using a computational model. Alterations in lung function in aging and Sftpd -/- mice have been inferred from fitting simple mechanical models to respiratory impedance data (Zrs), however interpretation has been confounded by the simultaneous presence of multiple coexisting pathophysiologic processes. In contrast to the inverse modeling approach, this study uses simulation from experimental measurements to recapitulate how aging and inflammation alter Zrs. Histologic and mechanical measurements were made in C57BL6/J mice and congenic Sftpd-/- mice at 8, 27 and 80 weeks of age (n = 8/group). An anatomic computational model based on published airway morphometry was developed and Zrs was simulated between 0.5 and 20 Hz. End expiratory pressure dependent changes in airway caliber and recruitment were estimated from mechanical measurements.
Tissue elements were simulated using the constant phase model of viscoelasticity. Baseline elastance distribution was estimated in 8-week-old wild type mice, and stochastically varied for each condition based on experimentally measured alteration in elastic fiber composition, alveolar geometry and surfactant composition. Weighing reduction in model error against increasing model complexity allowed for identification of essential features underlying mechanical pathology and their contribution to Zrs. Using a maximum likelihood approach, alteration in lung recruitment and diminished elastic fiber density were shown predictive of mechanical alteration at • Christopher B Massa 2017-08-01 Full Text Available Both aging and chronic inflammation produce complex structural and biochemical alterations to the lung known to impact work of breathing. Mice deficient in surfactant protein D (Sftpd develop progressive age-related lung pathology characterized by tissue destruction/remodeling, accumulation of foamy macrophages and alteration in surfactant composition. This study proposes to relate changes in tissue structure seen in normal aging and in chronic inflammation to altered lung mechanics using a computational model.
Alterations in lung function in aging and Sftpd -/- mice have been inferred from fitting simple mechanical models to respiratory impedance data (Zrs, however interpretation has been confounded by the simultaneous presence of multiple coexisting pathophysiologic processes. In contrast to the inverse modeling approach, this study uses simulation from experimental measurements to recapitulate how aging and inflammation alter Zrs. Histologic and mechanical measurements were made in C57BL6/J mice and congenic Sftpd-/- mice at 8, 27 and 80 weeks of age (n = 8/group. An anatomic computational model based on published airway morphometry was developed and Zrs was simulated between 0.5 and 20 Hz. End expiratory pressure dependent changes in airway caliber and recruitment were estimated from mechanical measurements.
Tissue elements were simulated using the constant phase model of viscoelasticity. Baseline elastance distribution was estimated in 8-week-old wild type mice, and stochastically varied for each condition based on experimentally measured alteration in elastic fiber composition, alveolar geometry and surfactant composition. Weighing reduction in model error against increasing model complexity allowed for identification of essential features underlying mechanical pathology and their contribution to Zrs.
Using a maximum likelihood approach, alteration in lung recruitment and diminished elastic fiber density were shown predictive of mechanical • Cisneros, Francisco J; Jayo, Manuel; Niedziela, Linda 2005-01-15 Ozone (O(3)) inhalation has been associated with respiratory tract inflammation and lung functional alterations. To characterize the O(3)-induced lung inflammation in mice, the effective dose and exposure time were determined. Total protein levels of bronchoalveolar lavage fluid (BALF), cytological smears, and lung histopathology and morphometry were used to assess and measure the degree of pulmonary inflammation in the mouse model. Ozone inhalation caused acute pneumonitis that was characterized by a high number of infiltrating neutrophils (PMNs) immediately after exposure and increased levels of protein in BALF in mice killed 8h after O(3) exposure. The anti-inflammatory properties of Uncaria tomentosa (UT) have been documented previously.
To evaluate the anti-inflammatory effects of UT, male mice were given an UT extract for 8 days, exposed to O(3), and killed 0 or 8 h after O(3) exposure. When compared to untreated controls, UT-treated mice had significantly (p. • Schwander, Stephan; Dheda, Keertan 2011-01-01 The study of human pulmonary immunity against Mycobacterium tuberculosis (M.tb) provides a unique window into the biological interactions between the human host and M.tb within the broncho-alveolar microenvironment, the site of natural infection.
Studies of bronchoalveolar cells (BACs) and lung tissue evaluate innate, adaptive, and regulatory immune mechanisms that collectively contribute to immunological protection or its failure. In aerogenically M.tb–exposed healthy persons lung immune responses reflect early host pathogen interactions that may contribute to sterilization, the development of latent M.tb infection, or progression to active disease. Studies in these persons may allow the identification of biomarkers of protective immunity before the initiation of inflammatory and disease-associated immunopathological changes. In healthy close contacts of patients with tuberculosis (TB) and during active pulmonary TB, immune responses are compartmentalized to the lungs and characterized by an exuberant helper T-cell type 1 response, which as suggested by recent evidence is counteracted by local suppressive immune mechanisms. Here we discuss how exploring human lung immunity may provide insights into disease progression and mechanisms of failure of immunological protection at the site of the initial host–pathogen interaction. These findings may also aid in the identification of new biomarkers of protective immunity that are urgently needed for the development of new and the improvement of current TB vaccines, adjuvant immunotherapies, and diagnostic technologies.
To facilitate further work in this area, methodological and procedural approaches for bronchoalveolar lavage studies and their limitations are also discussed. PMID:21075901 • 2010-01-01 Background Clara cell protein (CC16), the main secretory product of bronchiolar Clara cells, plays an important protective role in the respiratory tract against oxidative stress and inflammation. The purpose of the study was to investigate the role of elemental carbon ultrafine particles (EC-UFP)-induced oxidative stress on Clara cells and CC16 in a mouse model of allergic lung inflammation. Methods Ovalbumin (OVA)-sensitized mice were exposed to EC-UFP (507 μg/m3 for 24 h) or filtered air immediately prior to allergen challenge and systemically treated with N-acetylcysteine (NAC) or vehicle prior and during EC-UFP inhalation.
CC16 was measured up to one week after allergen challenge in bronchoalveolar lavage fluid (BALF) and in serum. The relative expression of CC16 and TNF-α mRNA were measured in lung homogenates. A morphometrical analysis of mucus hypersecretion and electron microscopy served to investigate goblet cell metaplasia and Clara cell morphological alterations.
Results In non sensitized mice EC-UFP inhalation caused alterations in CC16 concentration, both at protein and mRNA level, and induced Clara cell hyperplasia. In sensitized mice, inhalation of EC-UFP prior to OVA challenge caused most significant alterations of BALF and serum CC16 concentration, BALF total protein and TNF-α relative expression compared to relevant controls; their Clara cells displayed the strongest morphological alterations and strongest goblet cell metaplasia occurred in the small airways. NAC strongly reduced both functional and morphological alterations of Clara cells.
Conclusion Our findings demonstrate that oxidative stress plays an important role in EC-UFP-induced augmentation of functional and morphological alterations of Clara cells in allergic lung inflammation. PMID:20420656 • Alessandrini, Francesca; Weichenmeier, Ingrid; van Miert, Erik; Takenaka, Shinji; Karg, Erwin; Blume, Cornelia; Mempel, Martin; Schulz, Holger; Bernard, Alfred; Behrendt, Heidrun 2010-04-26 Clara cell protein (CC16), the main secretory product of bronchiolar Clara cells, plays an important protective role in the respiratory tract against oxidative stress and inflammation. The purpose of the study was to investigate the role of elemental carbon ultrafine particles (EC-UFP)-induced oxidative stress on Clara cells and CC16 in a mouse model of allergic lung inflammation. Ovalbumin (OVA)-sensitized mice were exposed to EC-UFP (507 microg/m(3) for 24 h) or filtered air immediately prior to allergen challenge and systemically treated with N-acetylcysteine (NAC) or vehicle prior and during EC-UFP inhalation. Macromedia Flash 8 Mini Projects Free Download.
CC16 was measured up to one week after allergen challenge in bronchoalveolar lavage fluid (BALF) and in serum. The relative expression of CC16 and TNF-alpha mRNA were measured in lung homogenates. A morphometrical analysis of mucus hypersecretion and electron microscopy served to investigate goblet cell metaplasia and Clara cell morphological alterations.
In non sensitized mice EC-UFP inhalation caused alterations in CC16 concentration, both at protein and mRNA level, and induced Clara cell hyperplasia. In sensitized mice, inhalation of EC-UFP prior to OVA challenge caused most significant alterations of BALF and serum CC16 concentration, BALF total protein and TNF-alpha relative expression compared to relevant controls; their Clara cells displayed the strongest morphological alterations and strongest goblet cell metaplasia occurred in the small airways. NAC strongly reduced both functional and morphological alterations of Clara cells. Our findings demonstrate that oxidative stress plays an important role in EC-UFP-induced augmentation of functional and morphological alterations of Clara cells in allergic lung inflammation. • Lund, Sean J; Portillo, Alex; Cavagnero, Kellen; Baum, Rachel E; Naji, Luay H; Badrani, Jana H; Mehta, Amit; Croft, Michael; Broide, David H; Doherty, Taylor A 2017-08-01 Asthma is a complex disease that is promoted by dysregulated immunity and the presence of many cytokine and lipid mediators.
Despite this, there is a paucity of data demonstrating the combined effects of multiple mediators in asthma pathogenesis. Group 2 innate lymphoid cells (ILC2s) have recently been shown to play important roles in the initiation of allergic inflammation; however, it is unclear whether lipid mediators, such as cysteinyl leukotrienes (CysLTs), which are present in asthma, could further amplify the effects of IL-33 on ILC2 activation and lung inflammation. In this article, we show that airway challenges with the parent CysLT, leukotriene C4 (LTC4), given in combination with low-dose IL-33 to naive wild-type mice, led to synergistic increases in airway Th2 cytokines, eosinophilia, and peribronchial inflammation compared with IL-33 alone. Further, the numbers of proliferating and cytokine-producing lung ILC2s were increased after challenge with both LTC4 and IL-33.
Levels of CysLT1R, CysLT2R, and candidate leukotriene E4 receptor P2Y12 mRNAs were increased in ILC2s. The synergistic effect of LTC4 with IL-33 was completely dependent upon CysLT1R, because CysLT1R(-/-) mice, but not CysLT2R(-/-) mice, had abrogated responses.
Further, CysLTs directly potentiated IL-5 and IL-13 production from purified ILC2s stimulated with IL-33 and resulted in NFAT1 nuclear translocation. Finally, CysLT1R(-/-) mice had reduced lung eosinophils and ILC2 responses after exposure to the fungal allergen Alternaria alternata Thus, CysLT1R promotes LTC4- and Alternaria-induced ILC2 activation and lung inflammation. These findings suggest that multiple pathways likely exist in asthma to activate ILC2s and propagate inflammatory responses. Copyright © 2017 by The American Association of Immunologists, Inc. • 2013-01-01 OBJECTIVE: Formaldehyde exposure during the menstrual cycle is known to affect the course of allergic lung inflammation. Because our previous data demonstrated that formaldehyde combined with an ovariectomy reduced allergic lung inflammation, we investigated the putative role of ovary removal and progesterone treatment when considering the effect of formaldehyde on allergic lung inflammation. METHOD: Ovariectomized rats and their matched controls were exposed to formaldehyde (1%.
• Goldmann Torsten 2010-04-01 Full Text Available Abstract Background A large number of studies have investigated the effects of high tidal volume ventilation in mouse models. In contrast data on very short term effects of low tidal volume ventilation are sparse. Therefore we investigated the functional and structural effects of low tidal volume ventilation in mice. Methods 38 Male C57/Bl6 mice were ventilated with different tidal volumes (Vt 5, 7, and 10 ml/kg without or with application of PEEP (2 cm H2O. Four spontaneously breathing animals served as controls. Oxygen saturation and pulse rate were monitored.
Lung function was measured every 5 min for at least 30 min. Afterwards lungs were removed and histological sections were stained for measurement of infiltration with polymorphonuclear leukocytes (PMN.
Moreover, mRNA expression of macrophage inflammatory protein (MIP-2 and tumor necrosis factor (TNFα in the lungs was quantified using real time PCR. Results Oxygen saturation did not change significantly over time of ventilation in all groups (P >0.05. Pulse rate dropped in all groups without PEEP during mechanical ventilation. In contrast, in the groups with PEEP pulse rate increased over time. These effects were not statistically significant (P >0.05. Tissue damping (G and tissue elastance (H were significantly increased in all groups after 30 min of ventilation (P 0.05. Mechanical ventilation significantly increased infiltration of the lungs with PMN (P Conclusions Our data show that very short term mechanical ventilation with lower tidal volumes than 10 ml/kg did not reduce inflammation additionally.
Formation of atelectasis and inadequate oxygenation with very low tidal volumes may be important factors. Application of PEEP attenuated inflammation. • Zhang, Dong-Fang; Zhang, Jin; Li, Ran 2015-08-15 Salvianolic acid B (Sal B), a bioactive compound isolated from the Chinese herb Radix Salviae Miltiorrhizae, has been reported to exhibit anti-inflammatory and anti-oxidantive effects. The aim of this study was to investigate the protective effects of Sal B on cigarette smoke (CS)-induced acute lung inflammation. Sal B was given intraperitoneally (i.p.) to mice 1h before CS exposure daily for four consecutive days. Bronchoalveolar lavage fluid (BALF) was collected to assess the levels of inflammatory cytokines and cell counts. Lung tissues were used to analysis pathological changes, total glutathione (GSH), nuclear factor erythroid-2 related factor 2 (Nrf-2), and nuclear factor-kappa B (NF-κB) expression.
The results showed that Sal B inhibited CS-induced lung pathological changes, the infiltration of inflammatory cells, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and monocyte chemoattractant protein 1 (MCP-1) productions. Sal B also up-regulated CS-induced total glutathione (GSH) production. Furthermore, Sal B was found to up-regulate Nrf-2, hemeoxygenase1 (HO1) expression and suppress CS-induced NF-κB activation. In conclusion, the current study demonstrated that Sal B exhibited a protective effect on CS-induced lung injury and the possible mechanism was involved in activating Nrf-2 and inhibiting NF-κB activation. • Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Isobe, Ken-Ichi 2014-09-02 Acrolein, a compound found in cigarette smoke, is a major risk factor for respiratory diseases. Previous research determined that both acrolein and cigarette smoke produced reactive oxygen species (ROS). As many types of pulmonary injuries are associated with inflammation, this study sought to ascertain the extent to which exposure to acrolein advanced inflammatory state in the lungs.
Our results showed that intranasal exposure of mice to acrolein increased CD11c(+)F4/80(high) macrophages in the lungs and increased ROS formation via induction of NF-κB signaling. Treatment with acrolein activated macrophages and led to their increased production of ROS and expression of several key pro-inflammatory cytokines. In in vitro studies, acrolein treatment of bone marrow-derived GM-CSF-dependent immature macrophages (GM-IMs), activated the cells and led to their increased production of ROS and expression of several key pro-inflammatory cytokines. Acrolein treatment of macrophages induced apoptosis of lung epithelial cells. Inclusion of an inhibitor of ROS formation markedly decreased acrolein-mediated macrophage activation and reduced the extent of epithelial cell death. These results indicate that acrolein can cause lung damage, in great part by mediating the increased release of pro-inflammatory cytokines/factors by macrophages.
• Gill, Sean; Wight, Thomas N; Frevert, Charles W 2010-06-01 Exposure to viruses and bacteria results in lung infections and places a significant burden on public health. The innate immune system is an early warning system that recognizes viruses and bacteria, which results in the rapid production of inflammatory mediators such as cytokines and chemokines and the pulmonary recruitment of leukocytes. When leukocytes emigrate from the systemic circulation through the extracellular matrix (ECM) in response to lung infection they encounter proteoglycans, which consist of a core protein and their associated glycosaminoglycans.